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SUMMARY

Cohort studies require the use of large samples when the risk of the event is very low. Databases that
are large and population-based, such as Medicaid �les, are frequently used for cohort studies, since they
provide access to the large samples required for adequate statistical power at a relatively a�ordable cost.
Epidemiologic studies using these databases typically require veri�cation of reported diagnoses, however,
because of the potential for errors in disease reporting. When exposure prevalence is also low, as in many
pharmacoepidemiologic investigations of drug toxicity, there are few exposed cases compared to the number
of unexposed cases. Veri�cation of all unexposed presumptive cases through medical records is costly. We
investigate the statistical e�ciency of a design in which all exposed cases but only a subsample of the
unexposed cases are veri�ed. We show that good e�ciency can usually be achieved with a small subsample
of unexposed cases. Published in 1999 by John Wiley & Sons, Ltd. This is a US Government work and is
in the public domain in the United States.

1. INTRODUCTION

When the risk of an event is very low, cohort studies require the use of large samples. In this
context, even case-control studies can require large samples when the prevalence of exposure is
also low, as in the study of many pharmaceutical exposures. A convenient approach is to use large,
population-based databases, such as Medicaid �les, because they provide easy and relatively a�ord-
able access to the sample sizes required for adequate statistical power.1 Although such databases
pose methodologic problems, they are commonly used.
For example, pharmacoepidemiology studies are commonly performed after new drugs are mar-

keted. Often, when these are conducted, the adverse drug reactions of interest are both serious and
so rare that rates of such events cannot be determined precisely to permit reliable comparisons be-
tween marketed drugs based only on pre-marketing studies, which usually have 500–3000 subjects.
Post-marketing studies are typically based on very large databases, commonly exceeding 100,000
subjects. For example, Strom et al.2 studied oral contraceptives as a risk factor for gall-bladder
disease using a retrospective cohort design. The database included the complete set of Medicaid
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billing data from the states of Michigan and Minnesota for the years 1980–1981 and permitted a
comparison of 139,943 oral contraceptive users with 341,478 non-users. The nested case-control
study is another common design used in pharmacoepidemiology studies.3

One of the primary methodologic concerns with population-based database studies is the po-
tential for errors in the diagnoses reported in the database. Thus, the performance of pharma-
coepidemiologic studies using these large databases usually requires veri�cation of diagnoses re-
ported in the database,1 which may be accomplished, for example, by obtaining medical records
of the presumptive cases identi�ed in the database. Typically, the number of individuals ex-
posed to the drug of interest who develop disease is very small because both the prevalence
of exposure and the incidence of disease are low, whereas the number of unexposed individ-
uals who develop disease may be much larger, because of the large pool of unexposed peo-
ple. Retrieving medical records for all of the unexposed individuals with disease can be costly.
At a cost of perhaps $100–$200 per record, retrieval of medical records is often a major ex-
pense and may limit the feasible study size. Therefore, we investigated whether verifying the
disease status of all exposed cases but only a random subsample of unexposed cases might re-
sult in substantial cost savings with only a small loss of statistical e�ciency relative to complete
veri�cation.
Brenner and Gefeller4 examined a similar design for estimating relative risks, but they used

the same sampling fraction for verifying the disease status of exposed and unexposed presump-
tive cases. Our emphasis di�ers in that we allow di�erent sampling fractions for verifying the
disease status of exposed and unexposed presumptive cases. This is especially useful in the
common setting for pharmacoepidemiology studies, where most cases are unexposed. The pro-
posed method yields smaller variances for relative risk estimates than the method of Brenner and
Gefeller for typical scenarios in pharmacoepidemiologic studies. Moreover, the methods we present
can be used to study risk di�erences and other measures of exposure e�ect, as well as relative
risks.
We assume that all cases of the disease are detected (100 per cent sensitivity) but that some

individuals may be misclassi�ed as diseased because of imperfect speci�city of the diagnoses. Thus,
the methods we propose are appropriate for the study of serious conditions, such as bleeding peptic
ulcers, that require hospitalization and have a high probability of detection. In order to adapt our
methods for less serious diseases that might not always be detected (sensitivity less than 100 per
cent), we would need to validate not only cases but also non-cases. If such a condition were
common, its incidence would be estimated more accurately from pre-marketing studies. If such a
condition were rare, a post-marketing study would probably not be warranted. Therefore, we focus
on studies in which events are both serious and rare, and for which the assumption of 100 per
cent sensitivity is reasonable.
Following a presentation of notation and methods, we give results on the asymptotic relative

e�ciency comparing full veri�cation of all presumptive cases to veri�cation of a subsample of
presumptive cases with di�erent sampling fractions for the unexposed and exposed presumptive
cases. We then present the asymptotic relative e�ciency of the proposed method compared to
the method of Brenner and Gefeller. Simulations are presented that con�rm that the con�dence
intervals for relative risks estimated according to the proposed procedures have nominal coverage.
Procedures are illustrated by numerical examples, including a realistic example based on a study
to determine the risk of liver disease following treatment with non-steroidal anti-in
ammatory
drugs.
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Table I. Notation

True Falsely diagnosed Total presumptive Size of subsample from Number of true cases
cases cases cases presumptive cases in the subsample

Unexposed N0 D0 W0 T0 =D0 +W0 M06T0 X0
Exposed N1 D1 W1 T1 =D1 +W1 M16T1 X1

Quantities of interest: p0 =D0=N0; p1 =D1=N1

2. NOTATION AND METHODS

Let N0 and N1 be the numbers of unexposed and exposed members of the population, respec-
tively, and let other quantities be de�ned as in Table I. We are interested in p0 =P(true disease|
unexposed) and p1 =P(true disease|exposed). Usual risk measures such as the risk di�erence
p1 − p0 or relative risk p1=p0 can be based on estimates of p0 and p1.
A two-stage approach to estimating p0 is based on P(true disease or false disease|unexposed)×P

(true disease|(true disease or false disease) and unexposed). This equation holds because the subset
of patients with ‘true disease’ is included in the patients with ‘true disease or false disease’,
provided all individuals with true disease are identi�ed in the database as having the disease of
interest (100 per cent sensitivity). It is also assumed that the exposure is measured without error.
Letting p?0 =P(true disease or false disease | unexposed) and �0 =P(true disease | (true disease or
false disease) and unexposed), we obtain p0 =p?0 �0. The corresponding estimate is p̂0 = p̂0

? �̂0,
where p̂0

?=(D0 +W0)=N0; �̂0 =X0=M0, and, as de�ned in Table I, D0 is the number of true cases
who are unexposed, W0 is the number of falsely diagnosed cases who are unexposed, and X0 is
the number of true cases in the subsample of M0 unexposed cases selected for veri�cation. An
exactly analogous procedure is used to obtain p̂1. The quantities �0 and �1 are referred to as the
‘positive predictive values’.
An estimate of the variance of p̂0; var(p̂0)= var(p̂0

? �̂0) can be obtained using the multivariate
form of the ‘delta method’ and the fact that p̂0

? and �̂0 are uncorrelated, which is proved in the
Appendix. De�ne the proportion of unexposed presumptive cases that are selected in the sample
to be veri�ed as f0, where f0 =M0=T0. Then, the variance of p̂0 is

var(p̂0) = �
2
0var(p̂0

?) + (p?0 )
2
var(�̂0)

=
�20p

?
0 (1− p?0 )
N0

+
p?0 �0(1− �0)

f0N0
: (1)

An estimate of var(p̂0) is obtained by substituting p̂0
? and �̂0 for p?0 and �0. The derivation of this

variance estimator is provided in the Appendix. An analogous result can be obtained for var(p̂1),
where f1 =M1=T1 is the fraction of exposed presumptive cases that are selected in the sample to
be veri�ed. The intent is to verify the disease status of all exposed cases, which leads to f1 = 1.
In practice, however, it is rare that all medical records requested for veri�cation are received,
and f1¡1 is therefore common. The validity of our results depends on the assumption that the
availability of medical records among the T0 unexposed presumptive cases is unrelated to actual
(true) disease status, and, in particular, we assume that the M0 unexposed subjects whose diagnoses
are reviewed are representative of all T0 unexposed presumptive cases. Similar assumptions are
made for T1 and M1.
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3. RESULTS

3.1. Asymptotic relative e�ciency of method for log(R̂R) relative to full veri�cation

Suppose we want to compute the variance of the estimated log relative risk, log (p̂1=p̂0), adjusted
for misclassi�cation. By the delta method,

var(log (p̂1=p̂0))=
1
p20
var(p̂0) +

1
p21
var(p̂1) (2)

where the cross-product term is 0 since p̂0 and p̂1 are uncorrelated. A similar approach could be
applied to the odds ratio, risk di�erence, or any other regular function of p0 and p1. Estimates
are obtained by substituting p̂0 and p̂1 for p0 and p1.
We de�ne the asymptotic relative e�ciency (ARE) from verifying M0 =f0T0 unexposed cases

and M1 =f1T1 exposed cases as the ratio of the variance of the log relative risk with complete ver-
i�cation, f0 = 1 and f1 = 1, to the variance with fractional veri�cation, f061 and f161. The ARE
is obtained by substituting the results for var(p̂0) and var(p̂1) (equation (1)) into equation (2). It
follows that the ARE is:

1
p20

[
�20p

?
0 (1− p?0 )
N0

+
p?0 �0(1− �0)

N0

]
+
1
p21

[
�21p

?
1 (1− p?1 )
N1

+
p?1 �1(1− �1)

N1

]
1
p20

[
�20p

?
0 (1− p?0 )
N0

+
p?0 �0(1− �0)

f0N0

]
+
1
p21

[
�21p

?
1 (1− p?1 )
N1

+
p?1 �1(1− �1)

f1N1

] :
De�ne k =M0=M1, the ratio of the number of presumptive cases in the unexposed subsample

relative to the number in the exposed subsample. If p?0 is small, then p
?
0 (1−p?0 ) := p?0 . Similarly,

if p?1 is small, then p?1 (1 − p?1 ) := p?1 . Under these assumptions, the above representation for
ARE simpli�es to

ARE := 1− �0k + �1 − �0�1((1− f0) + k(1− f1))− �1f0 − �0f1k
�0k + �1 − �0�1((1− f0) + k(1− f1)) (3)

The ARE is 1 with full veri�cation, f0 =f1 = 1, and falls below 1 when sampling the unexposed
cases. We use equation (3) in the following discussion of ARE.
An important question in applying this methodology is how to achieve a particular ARE. The

ARE depends on the sampling fractions, f0 and f1, the positive predictive values, �0 and �1,
and the sampling ratio, k. Contour plots are presented showing the combinations of f0, �0 = �1
and k that yield a speci�ed ARE, with a speci�ed f1. Here, the positive predictive values for
exposed and unexposed presumptive cases are taken to be equal, �0 = �1. Figure 1 is a contour
plot showing the relationship between f0, �0 = �1 and k for ARE=0·8 and complete sampling of
exposed presumptive cases, f1 = 1. The value of k is denoted at the base of each contour line.
For example, to achieve an ARE of 80 per cent when verifying equal numbers of exposed and
unexposed cases (k =1), one only needs to sample 24 per cent of the unexposed presumptive cases
(f0 = 0·24) when the positive predictive values, �0 = �1, are 0·60. The ARE will exceed 80 per
cent if either f0, �0 = �1, or k are increased. Thus, for any �xed k, the ARE exceeds 80 percent
if one moves outward (northeast) from the contour plot in Figure 1. Likewise, increasing k allows
one to achieve an ARE of 80 per cent with smaller values of �0 = �1 or f0. Thus, an ARE of
80 per cent is achieved with f0 = 0·04 and �0 = �1 = 0·60 when k =1·5, and with f0 = 0·13 and
�0 = �1 = 0·40 when k =2. Larger ratios of sampled unexposed to exposed cases (k) are needed
for smaller values of positive predictive value, �0 = �1.

Published in 1999 by John Wiley & Sons, Ltd. Statist. Med. 18, 3021–3036 (1999)
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Figure 1. Contour plot for ARE of 80 per cent with f1 = 1·0. Each contour represents a di�erent value of k =M0=M1

It is not always possible to validate all of the exposed presumptive cases (for example, missing
records, access denial). The ARE above compares the variance based on complete veri�cation of
all exposed presumptive cases and a subsample of all unexposed presumptive cases to the variance
obtained from complete veri�cation. In cases where complete veri�cation of all exposed presump-
tive cases is not possible, it is more meaningful to consider the ARE comparing the variance
based on veri�cation of the maximum achievable fraction of veri�ed exposed presumptive cases
and a subsample of all unexposed presumptive cases to the variance based on veri�cation of the
maximum achievable fraction of veri�ed exposed presumptive cases and complete veri�cation of
all unexposed presumptive cases. This quantity is referred to as the ‘adjusted ARE’. The ‘adjusted
ARE’ compares the variance with a given maximum achievable f1¡1, f1(max), and f0 = 1 to
the variance for the same f1(max) and for f0¡1. This quantity can be obtained as the ratio of
the ARE based on the desired f0¡1 with f1 =f1(max) to the ARE based on the desired f0 = 1
with f1 =f1(max). In the example contour plots in Figures 1–3, the contour plots of ‘adjusted
ARE’, when f1¡1, are very similar to those shown in Figures 1–3, indicating that for a �xed
number of veri�ed exposed cases, one can achieve good ‘adjusted ARE’ without sampling many
more unexposed than exposed cases.
Similar results are found with a contour plot corresponding to an ARE of 90 per cent and f1 = 1

(Figure 2). With the positive predictive value of 0·60 and k =1, a sampling fraction, f0 = 0·57
would be required to achieve a 90 per cent ARE. If k =3, then a sampling fraction, f0 = 0·13
is su�cient. In general, as k increases a smaller sampling fraction, f0, is required to achieve
ARE=0·9 for �xed �0 = �1. Also, as k increases, an ARE=0·9 can be achieved with decreasing
values of �0 = �1 for �xed f0.
As discussed above, it is not always possible to validate all of the exposed presumptive cases.

A contour plot with f1 = 0·9 and an ARE of 80 per cent is displayed in Figure 3. Comparison of
Figure 3 with Figure 1 shows that there is a trade-o� between f0, f1 and k. A reduction in f1

Published in 1999 by John Wiley & Sons, Ltd. Statist. Med. 18, 3021–3036 (1999)
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Figure 2. Contour plot for ARE of 90 per cent with f1 = 1·0. Each contour represents a di�erent value of k =M0=M1

Figure 3. Contour plot for ARE of 80 per cent with f1 = 0·9. Each contour represents a di�erent value of k =M0=M1

requires an increase in f0 and=or k to maintain ARE=0·8. For example, with f1 = 1·0, an ARE
of 80 per cent requires f0 = 0·12 when �0 = �1 = 0·40 and k =2 (Figure 1). However, if f1 = 0·9,
an ARE of 80 per cent requires f0 = 0·32 when �0 = �1 = 0·40 and k =2 (Figure 3).

Published in 1999 by John Wiley & Sons, Ltd. Statist. Med. 18, 3021–3036 (1999)
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Figure 4. Plot of ARE against f0 for di�erent values of k =M0=M1, with �0 = �1 = 0·5 and f1 = 1

The ARE is plotted against f0 for various values of k with f1 = 1 and with �0 = �1 = 0·5
in Figure 4. Figure 5 shows similar plots for �0 = �1 = 0·8. It is seen that the ARE increases
with increasing f0. As k increases, the increase in ARE that results from a given increase in f0
diminishes. The ARE also increases with increasing �0 = �1 for all �xed values of f0 and k.
The important message is that for large population-based databases, 80 per cent e�ciency or

higher can be achieved by verifying all or a large proportion of exposed presumptive cases and a
relatively small fraction of all unexposed presumptive cases. As the fraction of exposed presumptive
cases that are veri�able decreases, the fraction of unexposed presumptive cases required and=or
the ratio of the number of presumptive cases in the unexposed subsample to the number of
presumptive cases in the exposed subsample need to be increased to achieve a speci�ed ARE.
For a �xed limited number of available exposed cases, however, one can achieve good ‘adjusted
ARE’ by sampling modest numbers of unexposed cases.

3.2. Asymptotic relative e�ciency of method for log(R̂R) relative to the approach of Brenner
and Gefeller

It is seen that good ARE can be obtained with veri�cation of a small subsample of the unexposed
presumptive cases. The method of Brenner and Gefeller (BG) also allows for veri�cation of a
subsample. The ARE for the BG method is a special case of the ARE formula presented here
(equation (3)), with f0 =f1¡1. In this section, we compare the e�ciency of the method proposed
here (BBGS) with the method of BG. We �x the total number of presumptive cases to be veri�ed
to be the same in both methods. The total number of cases veri�ed using the BBGS method is
M0 + M1 =f0T0 + f1T1. De�ning f=(M0 + M1)=(T0 + T1)= (f0T0 + f1T1)=(T0 + T1), we note
that the BG method will sample the same number of cases as the BBGS method provided the
BG method samples the same proportion, f, of presumptive exposed and unexposed cases. The
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Figure 5. Plot of ARE against f0 for di�erent values of k =M0=M1, with �0 = �1 = 0·8 and f1 = 1

pertinent question is then, what is the relative performance of the two methods when the same
total number of presumptive cases are veri�ed, and thus the cost of veri�cation is the same.
By de�nition, k =f0T0=f1T1 which yields T0 = (f1T1k)=f0. Substituting this result into f yields
f=f0f1(k+1)=(f1k+f0). The ARE comparing full veri�cation to the BG method is obtained by
substituting f0 =f1 =f into (3). The relative e�ciency, RE, comparing BG to BBGS is obtained
by taking the ratio of the variance of the BBGS method with sampling fractions f0¡1 and f1 = 1
to the variance of the BG method with the common sampling fraction, f=f0(f1k+1)=(f1k+f0).
After some algebraic simpli�cation and use of the assumptions that p?0 and p?1 are both small,
that were used in deriving (3), RE can be shown to be

RE :=
f0(1 + k)(k�0 + �1 − �0�1 + f0�0�1)
(f0 + k)(k�0 + f0�1 − k�0�1 + f0k�0�1) : (4)

Here, RE less than 1 indicates that BBGS has smaller variance than BG for the same number of
presumptive cases veri�ed, and thus BG is less e�cient than BBGS.
Since the positive predictive values (PPV) for the exposed and unexposed groups are commonly

the same or similar, we �rst consider the case where �0 = �1. In this case, it can be shown that
RE61 when k¿f1=20 or equivalently when f0¿(T1=T0)

2. Since the BBGS method is proposed here
for scenarios where there are many more unexposed presumptive cases than exposed presumptive
cases, (T1=T0)

2 will be small and thus this condition will usually be met. Thus, BBGS will usually
be more e�cient than BG. Typical examples of RE are shown in Table II.
The impact of unequal values of �0 and �1 depends on which group has the larger PPV

(Table II). For any �xed �0, as �1 decreases relative to �0, RE of BG decreases. Thus, the
BG method becomes less e�cient relative to the BBGS method as �1 decreases for �xed values
of �0. If �1 is large and �0 is much smaller, BG can be more e�cient than BBGS, as indicated
by the entry with �0 = 0·5 and �1 = 0·9 in Table II. Such a scenario would occur if there were
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Table II. Examples of ARE comparing BBGS and BG methods, RE

T0 = 500; T1 = 25 T0 = 500; T1 = 50 T0 = 500; T1 = 100
�0 = 0·7; f0 = 0·3 �0 = 0·6; f0 = 0·3 �0 = 0·5; f0 = 0·3

k =6 k =3 k =1·5
�1 RE �1 RE �1 RE

0·2 0·391 0·1 0·433 0·1 0·520
0·5 0·516 0·3 0·576 0·3 0·703
0·7 0·646 0·6 0·711 0·5 0·847
0·8 0·736 0·7 0·798 0·7 0·928
0·9 0·851 0·9 0·902 0·9 1·016

a suspected link between exposure and disease and physicians tended to base their diagnosis, in
part, on the exposure status. We would not expect to see such a large di�erence between �0 and
�1 in most applications, however.

3.3. Simulations to study coverage of the 95 per cent con�dence interval on log (p1 =p0)

We conducted simulations to study the properties of asymptotic methods for realistic sample
sizes and parameter values. To examine the coverage of the 95 per cent con�dence interval on
log (p1=p0), constructed as log (p̂1=p̂0)± 1·96{v̂ar(log (p̂1=p̂0))}1=2, we de�ned the relative risk
p1=p0 =RR and expressed �0 and �1 in terms of speci�cities s0 and s1, respectively, since these are
typically more readily available than positive predictive values. To be precise, s0 is the probability
of no diagnosis of disease in unexposed non-diseased individuals and s1 is de�ned similarly for ex-
posed individuals. It follows that �0 =p0=[p0+(1−p0)(1−s0)] and �1 =p1=[p1+(1−p1)(1−s1)].
Four sets of simulations were performed, corresponding to various choices of RR, s0, and s1.

In each set, N1 was �xed at 10; 000 exposed individuals and N0 at 990; 000 unexposed, while
six di�erent values of p0 (0·001, 0·002, 0·005, 0·010, 0·020, 0·100) and 15 values of f0 (0·001,
0·005, 0·01, 0·05, 0·10, 0·15, 0·2, 0·3, 0·4, 0·5, 0·6, 0·7, 0·8, 0·9, 1·0) were used. For each of
the 4× 6× 15=360 combinations studied, 10; 000 independent data sets were generated. If the
coverage is nominal at 95 per cent, the 95 per cent con�dence interval for the coverage estimate
would be 0·950± 0·0043.
To generate each sample, we recall that the N0 unexposed cases fall into three categories: true

positives (that is, truly diseased and presumed to have the disease); true negatives, and false
positives, because by assumption there are no false negatives. A value for T0, the number of
unexposed presumptive cases, was randomly selected from a binomial distribution with parameters
p?0 and N0. Conditional on T0, the number of true positive cases, D0, was randomly selected
from a binomial distribution with index T0 and probability �0. The number of false positive
cases was then computed as W0 = T0 − D0. The next step was to determine the make-up of the
subsample. The number of presumptive cases in the subsample is M0 =f0T0 (rounded up). The
number of unexposed true positive cases selected in the subsample, X0, was randomly selected
from a hypergeometric distribution with indices (urn sizes) D0 and W0 and with a total of M0
units selected out of the T0 =D0 +W0 units. That is, X0 units were taken to be true positives out
of the M0 unexposed presumptive cases selected in the subsample. An analogous procedure was
followed for generating the random values for the exposed cases in the simulated data sets.
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Table III. Example 1 information

True Falsely Total Size of subsample Number of true
cases diagnosed cases presumptive cases from presumptive cases in the

cases subsample

Unexposed N0 = 990; 000 D0 = 990 W0 = 990 T0 = 1980 M0 = 150 X0 = 75
Exposed N1 = 10; 000 D1 = 50 W1 = 100 T1 = 150 M1 = 150 X1 = 50

Quantities of interest:
p0 =D0=N0 = 0·001
p̂0
? = (D0 +W0)=N0 = (990 + 990)=990; 000= 0·002
�̂0 =X0=M0 = 75=150= 0·5; p̂0 = p̂0? × �̂0 = 0·002× 0·5= 0·001
p1 =D1=N1 = 0·005
p̂1
? = (D1 +W1)=N1 = (50 + 100)=10; 000= 0·015
�̂1 =X1=M1 = 50=150= 1=3; p̂1 = p̂1

? × �̂1 = 0·015× (1=3)= 0·005
k =M0=M1 = 150=150= 1; f0 =M0=T0 = 150=1980= 0·08
Estimated relative risk = p̂1=p̂0 = p̂1=p̂0 = 5=1= 5 (note that the uncorrected relative risk is p̂1

?=p̂0
? =15=2= 7·5)

Table IV. Example 1: standard error of the log(RR)

M0 M1 = 150= T1 M1 = 90

f0 k SE(log R̂R) ARE RE k SE(log R̂R) ARE Adjusted ARE
?

150 0·08 1 0·165 0·773 0·258 1·67 0·190 0·583 0·829
300 0·15 2 0·154 0·881 0·328 3·33 0·181 0·642 0·913
600 0·30 4 0·149 0·948 0·477 6·67 0·176 0·676 0·962
1980 1·00 13·2 0·145 1·000 1·000 22 0·173 0·703 1·000
?
Compared to M1 = 90, M0 = 1980

The observed coverages for the 95 per cent con�dence intervals for RR =5, s0 = 0·998999
and s1 = 0·989950 fell within the expected interval 0·95 ± 0·0043= (0·9457; 0·9543) in all but
5 out of the 90 cases examined (range: 0·9443; 0·9558), compared to 0·05× 90=4·5 expected.
Thus, coverage was at near nominal levels despite the fact that some situations examined, such as
p0 = 0·001 and f0 = 0·001, correspond to only 0·99 true unexposed cases expected in the sample
and 50 true exposed cases. Very similar results were found for three other sets of simulations,
(RR =5, s0 = s1 = 0·95), (RR =2, s0 = s1 = 0·95), (RR =5, s0 = s1 = 0·80), which had 4, 5 and 5
of 90 cases, respectively, falling outside the expected interval. We conclude that these procedures
produce con�dence intervals with near nominal coverage.

3.4. Numerical examples

Two numerical examples illustrate these calculations and the e�ect of using a non-exhaustive
sample of M0¡T0 unexposed presumptive cases and a sample of M1¡T1 exposed presumptive
cases. The �rst example is similar to those used in the simulations. The summary data for this
example are presented in Table III. The exposed cases are sampled exhaustively (M1 = T1). The
parameters p̂0

?, �̂0, p̂1
?, �̂1, p̂0 and p̂1 are all computed from the observable data.

Table IV presents estimates of the standard error of the log relative risk, log (p̂1=p̂0), for M0
equal to 150, 300, 600 and 1980 (T0) and for M1 equal to 150 (T1) or 90, with X0 set to its expected
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Table V. Example 2 information

True Falsely Total Size of subsample Number of true
cases diagnosed presumptive from presumptive cases in the

cases cases cases subsample

Unexposed N0 = 1; 1000; 000 D0 = 181 W0 = 519 T0 = 700 M0 = 379 (actual) X0 = 98
Exposed N1 = 71; 000 D1 = 20 W1 = 58 T1 = 78 M1 = 35 (actual) X1 = 9

Quantities of interest:
p0 = 0·0001645 (8-year cumulative incidence)
p̂0
? = (181 + 519)=1; 100; 000= 0·0006364
�̂0 =X0=M0 = 98=379= 0·259; p̂0 = 0·0006364× 0·259= 0·0001648
p1 = 0·0002817 (8-year cumulative incidence)
p̂1
? = (20 + 58)=71; 000= 0·0010986
�̂1 = 9=35= 0·257; p̂1 = 0·0010986× 0·257= 0·0002823
k =M0=M1 = 379=35= 10·83; F0 =M0=T0 = 379=700= 0·51
Estimated relative risk= p̂1=p̂0 = 2·8234=1·6483= 1·7 (note that the uncorrected relative risk is p̂1

? =p̂0
? =10·986=

6·364= 1·7, which is unbiased because the proportions of exposed and unexposed presumptive cases who are true cases
are nearly identical)

value, E(X0)= 0·5M0. The estimated ARE for each set of values relative to complete veri�cation
is also presented. Note that the AREs computed as ratios of the squared standard errors equal those
calculated from equation (3). For M1 = T1 = 150, this example shows that M0 = 600 (f0 = 0·30)
yields an ARE of 0·948. The relative e�ciency, RE, comparing BG to BBGS (equation (4)) is
also presented. In all cases with less than full veri�cation, BBGS is more e�cient than BG. For
M0 =M1 = 150, the RE is 0·258, indicating that the variance of the log (p1=p0) obtained using
BBGS would be approximately one-fourth that from using BG. If only M1 = 90 exposed cases
can be veri�ed, M0 = 600 (f0 = 0·30) yields 68 per cent e�ciency compared to an exhaustive
sample with f0 = 1 and f1 = 1. However, a more relevant comparison is between the cases with
M0 = 1980 and M0 = 600, both with M1 = 90, because 90 is the largest possible number of exposed
cases that can be veri�ed. The column denoted ‘Adjusted ARE’ uses M1 = 90 and M0 = 1980 as
the reference. The ‘Adjusted ARE’ for M0 = 600 (f0 = 0·30) is 96 per cent.
The next example is based on a study of the risk of liver disease from non-steroidal anti-

in
ammatory drugs.5;6 Although the study was originally performed as a case-control study using
COMPASS, a large Medicaid database, we were able to obtain the data to perform the cohort
analysis described below. All presumptive cases hospitalized with liver disease found over an 8-
year period were identi�ed for potential entry into the study. Medical records for all cases were
requested to verify their diagnoses. In addition, the records were used to exclude cases whose
liver disease was likely to be related to alcohol consumption or other underlying conditions. In
this example, the investigators were able to obtain only 35 (45 per cent) of the 78 requested
records for the exposed cases. Note also that the investigators observed �̂0 and �̂1, in this study,
and we have set D0 = p̂0T0; D1 = p̂1T1; W0 = T0 − D0 and W1 = T1 − D1. The summary data
for this example are presented in Table V. The parameters p̂0

?; �̂0; p̂1
?; �̂1; p̂0 and p̂1 are all

computed based on the observable data.
Table VI provides estimates of the ARE and the standard error of log (p̂1=p̂0) for various

values of M0, with X0 set to its expected value of 0·259M0 and M1 set to both the observed
value of 35 and the complete sampling value of 78. First, consider the case with M1 = 78. With
M0 = 350 (f0 = 0·5), an ARE of 93 per cent is attained. For M0 = 200 (f0 = 0·29) the ARE is
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Table VI. Example 2: standard error of the log(RR)

M0 M1 = 78= T1 M1 = 35

f0 k SE(log R̂R) ARE RE k SE(log R̂R) ARE Adjusted ARE?

35 0·05 0·45 0·365 0·416 0·447 1 0·423 0·310 0·565
70 0·10 0·90 0·304 0·601 0·400 2 0·371 0·402 0·733
105 0·15 1·35 0·280 0·705 0·415 3 0·352 0·446 0·813
200 0·29 2·56 0·256 0·844 0·507 5·71 0·333 0·498 0·908
350 0·50 4·49 0·244 0·931 0·668 10 0·324 0·528 0·961
700 1 8·97 0·235 1·000 1·000 20 0·318 0·549 1·000
? Compared to M1 = 35, M0 = 700

Table VII. Example 1: standard error of the risk di�erence (p̂1 − p̂0)
M0 M1 = 150= T1 M1 = 90

SE( [Risk Di�erence) ARE SE( [Risk Di�erence) ARE Adjusted ARE?

150 0·000710 0·988 0·000853 0·686 0·992
300 0·000708 0·994 0·000851 0·689 0·996
600 0·000707 0·998 0·000850 0·691 0·998
1980 0·000706 1·000 0·000849 0·692 1·000
? Compared to M1 = 90; M0 = 1980

84 per cent. The relative e�ciency, RE, is also presented. For this example, the BBGS method is
more e�cient than the BG method in all cases with less than full veri�cation. For M0 = 35 and
M1 = 78, the RE is 0·447, indicating that the variance of the log (p1=p0) obtained using BBGS
would be approximately one-half that from using BG. In this example, it was only possible to
obtain medical records for veri�cation for 35 exposed cases. Therefore, we computed the adjusted
ARE relative to M1 = 35 and M0 = 700. The adjusted ARE for M0 = 200 (f0 = 0·29) is 91 per
cent, and for M0 = 105 (f0 = 0·15) the adjusted ARE is 81 per cent.
In Tables VII and VIII, we present estimates of the standard error of the risk di�erence and

AREs for the previous examples. The variance of the risk di�erence is estimated by the sum of
the variances of p̂0 and p̂1. The patterns of results are similar to those for the log relative risk,
except that the AREs for the risk di�erences are all consistently higher than for the log relative
risk. In the �rst example (Table VII), M0 = 150 (f0 = 0·075) and M1 = 150 (f1 = 1·0) yield an
ARE of 99 per cent. If M1 is reduced to M1 = 90 (f1 = 0·6) the ARE drops to 69 per cent; the
adjusted ARE remains at 99 per cent, however. For the log relative risk, the case with M0 = 150
and M1 = 150 yields an ARE of 77 per cent (from Table IV). The case with M0 = 150 and
M1 = 90 yields an ARE of 58 per cent, with an adjusted ARE of 83 per cent. Similar patterns of
e�ciencies are found for the example concerning liver disease (Table VIII). Thus, smaller sampling
fractions would be required for the risk di�erence than for the log relative risk to achieve similar
e�ciencies.
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Table VIII. Example 2: standard error of the risk di�erence (p̂1 − p̂0)
M0 M1 = 78= T1 M1 = 35

SE( [Risk Di�erence) ARE SE( [Risk Di�erence) ARE Adjusted ARE ?

35 0·0000790 0·662 0·0000993 0·418 0·786
70 0·0000716 0·805 0·0000936 0·471 0·886
105 0·0000690 0·868 0·0000916 0·492 0·925
200 0·0000664 0·937 0·0000896 0·514 0·965
350 0·0000651 0·974 0·0000887 0·524 0·986
700 0·0000642 1·000 0·0000881 0·532 1·000
? Compared to M1 = 35, M0 = 700

4. DISCUSSION

For cohort studies of uncommon exposures and rare disease outcomes, we have proposed verifying
all exposed presumptive cases, or as many as can be veri�ed, but only a fraction of unexposed
presumptive cases. Our results generalize those of Brenner and Gefeller4 who studied relative
e�ciencies, assuming that the same sampling fraction was used for both exposed and unexposed
presumptive cases and con�ned attention to relative risks. Our methods also allow one to calculate
e�ciencies for risk di�erences and other measures of exposure e�ect. Brenner and Gefeller4 showed
that relative e�ciency keeps increasing as the common sampling fraction increases, whereas we �nd
sharply diminishing returns from increasing the sampling fraction for unexposed presumptive cases.
For our subsampling approach, it is shown that in many situations, quite low sampling fractions
for veri�cation of the unexposed cases, in the 20–30 per cent range, can achieve high e�ciency
relative to exhaustive sampling for estimating the relative risk. Smaller sampling fractions would
be required for the risk di�erence. This �nding is similar in principle to the result that increasing
the number of controls per case in a case-control study with a �xed number of cases yields
diminishing increases in e�ciency as the control to case ratio increases,7 although the problems
and mathematics di�er. It is worth noting that our approach uses an internal validation sample and
does not depend on external samples.
Our approach can lead to substantial reductions in the number of presumptive cases for whom

the disease status is veri�ed, resulting in substantial cost savings. Considering the same number
of veri�ed presumptive cases, our methods are also more e�cient than using the common sam-
pling fraction approach of Brenner and Gefeller for cohort studies of rare exposures and disease
outcomes. Thus, equal e�ciency can be achieved with a smaller number of cases veri�ed using
our methods, leading to substantial cost savings.
In using these methods, one should bear in mind the assumptions: (i) the database has 100 per

cent sensitivity for detecting true cases, though speci�city may be imperfect; (ii) the subsamples of
unexposed presumptive cases and exposed presumptive cases are representative of all unexposed
presumptive cases and all exposed presumptive cases, respectively, with respect to their probability
of having true disease; and (iii) the exposure is measured without error.
As described in the introduction, assumption (i) is reasonable for the proposed applications

of this method. Consider the case, however, where the sensitivities for detecting exposed and
unexposed cases are less than perfect. If the sensitivity of the database for detecting unexposed
cases is g0¡1 and that for detecting exposed cases is g1¡1, then the estimates of p̂0 and p̂1
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will estimate g0p0 and g1p1, respectively. If g0 = g1, estimates of the relative risk or log relative
risk remain unbiased, though the precision of these estimates may be diminished because fewer
presumptive cases will be available for subsampling. Estimates of risk di�erences will remain
biased even if g0 = g1, however.
It was assumed that the exposure information is measured without error. As discussed by Carson

et al.,1;8 a Food and Drug Administration funded validation study of a Medicaid database showed
that the drug exposure data are of ‘extremely high quality’. If, however, the exposure information
is measured with error, all of the methods discussed will yield potentially invalid results. Biases
resulting from the simultaneous misclassi�cation of the exposure and disease status are addressed
in Brenner, et al.9

APPENDIX

From the Delta method we obtain

var(p̂0)= �
2
0 var (p̂0

?) + (p?0 )
2 var (�̂0) + 2�0p?0 cov(p̂0

?�̂0):

It is now shown that p̂0
?= T0=N0 and �̂0 =X0=M0 are uncorrelated. The conditional covariance

cov(p̂0
?; �̂0|D0; W0)= 0, because T0 =D0 +W0. Therefore

cov(p̂0
?; �̂0) = E[0] + cov[E(p̂0

?|D0; W0); E(�̂0|D0; W0)]

= cov
[
T0
N0
;

D0
D0 +W0

]

= E
(
D0
N0

)
− E

(
T0
N0

)
E
(

D0
D0 +W0

)

= p0 − p?0 �0 = 0:
The same arguments show p̂1

? is uncorrelated with �̂1.
Thus, var(p̂0)= �

2
0var(p

?
0 ) + (p

?
0 )
2var(�0). The variances, var(p̂0

?) and var(�̂0), are required.
var(p̂0

?)=p?0 (1−p?0 )=N0 because p̂0?= T0=N0 and T0 is binomial with index N0 and probability
p?0 . var(�̂0) can be derived in the following manner. Conditional on T0, the number of true
unexposed cases, D0, is binomial with index T0 and probability �0. The total number of true
unexposed cases in the sample, out of the M0 total unexposed presumptive cases in the sample,
is denoted by X0. Thus, var(�̂0) is the variance of X0=M0 where M0 subjects are selected at
random without replacement from T0 subjects and M0 =f0T0. Conditional on the total number of
presumptive unexposed cases, T0, and the true total number of unexposed cases, D0, we sample
M0 =f0T0 presumptive unexposed cases without replacement. Thus, X0 follows a hypergeometric
distribution. Therefore

var(�̂0)= var
(
X0
M0

)
=E

[
var

(
X0
M0

∣∣∣∣D0; T0
)]
+ var

(
E
[
X0
M0

∣∣∣∣D0; T0
])

where

E
[
X0
M0

∣∣∣∣D0; T0
]
=E

[
X0
f0T0

]
=
D0f0T0
T0f0T0

=
D0
T0
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and

var
(
X0
M0

∣∣∣∣D0; T0
)
=

1

(f0T0)
2

D0(T0 − D0)f0T0(1− f0)T0
T 20 (T0 − 1)

=
(1− f0)
f0

D0(T0 − D0)
T 20 (T0 − 1)

:=
(1− f0)
f0

D0(T0 − D0)
T 30

:

It follows that

E
[
var

(
X0
M0

∣∣∣∣D0; T0
)]

:=
(1− f0)
f0

E
[
E
[
D0(T0 − D0)

T 30

∣∣∣∣ T0
]]

=
(1− f0)
f0

E
[
1
T 30

{T 20 �0 − (T0�0(1− �0) + (�0T0)2)}
]

=
(1− f0)
f0

E
[
�0
T0

− �0(1− �0)
T 20

− �20
T0

]

:=
(1− f0)
f0

�0(1− �0)
p?0 N0

and

var
(
E
[
X0
M0

∣∣∣∣D0; T0
])

= var
(
D0
T0

)
=E

[
var

(
D0
T0

∣∣∣∣ T0
)]
+ var

(
E
[
D0
T0

∣∣∣∣ T0
])

= E
[
1
T0
�0(1− �0)

]
+ var(�0)

:=
�0(1− �0)
p?0 N0

:

Thus

var(�̂0)
:=
�0(1− �0)
f0p?0 N0

leading to equation (1).
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